Final Exam - Functional Analysis M. Math I

06 May, 2022
(i) Duration of the exam is 3 hours.
(ii) The maximum number of points you can score in the exam is 100 .
(iii) You may directly invoke results proved in the class.
(iv) You are not allowed to consult any notes or external sources for the exam.

Name: \qquad
Roll Number: \qquad

1. (10 points) Let $C^{1}[0,1]$ denote the space of C^{1}-functions on $[0,1]$ endowed with the sup norm inherited from $C[0,1]$. Let

$$
\frac{d}{d x}:\left(C^{1}[0,1],\|\cdot\|_{\infty}\right) \rightarrow\left(C[0,1],\|\cdot\|_{\infty}\right)
$$

be the differentiation operator. Prove that D is linear and has closed graph, but is not continuous.

Total for Question 1: 10
2. (15 points) A subset Y of a Hilbert space \mathscr{H} is said to be an orthonormal set if it consists of mutually orthogonal unit vectors. If Y is an orthonormal set in \mathscr{H}, prove that the following conditions are equivalent:
(i) $[Y]=\mathscr{H}$ (that is, the linear span of Y is dense in \mathscr{H});
(ii) For each $u \in \mathscr{H}, u=\sum_{y \in Y}\langle u, y\rangle y$;
(iii) For each $u, v \in \mathscr{H},\langle u, v\rangle=\sum_{y \in Y}\langle u, y\rangle\langle y, v\rangle$.

Total for Question 2: 15
3. (20 points) Let \mathfrak{X} be a real Banach space and $(\mathfrak{X})_{1}$ denote the closed unit ball of \mathfrak{X}. A functional $\rho \in \mathfrak{X}^{\#}$ is said to be norm-attaining if there is an $x_{0} \in(\mathfrak{X})_{1}$ such that $\rho\left(x_{0}\right)=\|\rho\|$. Prove that the set of norm-attaining functionals in $\mathfrak{X}^{\#}$ is norm-dense in $\mathfrak{X}^{\#}$.
(You may assume the Ekeland variational principle stated as follows: For every $\varepsilon>0$, there is an $x_{0} \in(\mathfrak{X})_{1}$ such that for all $x \in(\mathfrak{X})_{1}$, we have

$$
\left.\rho\left(x-x_{0}\right) \geq-\varepsilon\left\|x-x_{0}\right\| .\right)
$$

Total for Question 3: 20
4. Let X be a compact Hausdorff space and let $\mathscr{D}(X):=\left\{\delta_{x}: x \in X\right\} \subseteq(C(X))^{\#}$ denote the set of Dirac measures on X.
(a) (5 points) Show that $\mathscr{D}(X)$ is the set of extreme points of the space of regular Borel probability measures on X.
(b) (10 points) Show that $\mathscr{D}(X)$ with the weak-* topology is homeomorphic to X.
(c) (10 points) Show that every regular Borel probability measure on X is the weak-* limit of finitely supported probability measures (discrete probability measures) on X.

Total for Question 4: 25
5. (15 points) Show that the closed unit ball of an infinite-dimensional Banach space is not compact (with respect to the norm topology).

Total for Question 5: 15
6. Let V be a real vector space.
(a) (5 points) Prove that among all the convex sets B in V containing 0 as an internal point and having a given Minkowski functional p, there is a largest B_{1} and a smallest B_{0} with respect to set inclusion.
(b) (10 points) Show that B_{1} is the closure of B_{0} in the convex core topology (the coarsest topology on V which makes all linear functionals on V continuous.)

Total for Question 6: 15

