Final Exam - Functional Analysis M. Math I

06 May, 2022

- (i) Duration of the exam is 3 hours.
- (ii) The maximum number of points you can score in the exam is 100.
- (iii) You may directly invoke results proved in the class.
- (iv) You are not allowed to consult any notes or external sources for the exam.

Name: _____

Roll Number:

1. (10 points) Let $C^{1}[0, 1]$ denote the space of C^{1} -functions on [0, 1] endowed with the sup norm inherited from C[0, 1]. Let

$$\frac{d}{dx}: (C^1[0,1], \|\cdot\|_{\infty}) \to (C[0,1], \|\cdot\|_{\infty})$$

be the differentiation operator. Prove that D is linear and has closed graph, but is not continuous.

Total for Question 1: 10

- 2. (15 points) A subset Y of a Hilbert space \mathscr{H} is said to be an *orthonormal set* if it consists of mutually orthogonal unit vectors. If Y is an orthonormal set in \mathscr{H} , prove that the following conditions are equivalent:
 - (i) $[Y] = \mathscr{H}$ (that is, the linear span of Y is dense in \mathscr{H});

- (ii) For each $u \in \mathscr{H}$, $u = \sum_{y \in Y} \langle u, y \rangle y$;
- (iii) For each $u, v \in \mathscr{H}, \langle u, v \rangle = \sum_{u \in Y} \langle u, y \rangle \langle y, v \rangle.$

Total for Question 2: 15

3. (20 points) Let \mathfrak{X} be a real Banach space and $(\mathfrak{X})_1$ denote the closed unit ball of \mathfrak{X} . A functional $\rho \in \mathfrak{X}^{\#}$ is said to be *norm-attaining* if there is an $x_0 \in (\mathfrak{X})_1$ such that $\rho(x_0) = \|\rho\|$. Prove that the set of norm-attaining functionals in $\mathfrak{X}^{\#}$ is norm-dense in $\mathfrak{X}^{\#}$.

(You may assume the Ekeland variational principle stated as follows: For every $\varepsilon > 0$, there is an $x_0 \in (\mathfrak{X})_1$ such that for all $x \in (\mathfrak{X})_1$, we have

$$\rho(x - x_0) \ge -\varepsilon \|x - x_0\|.)$$

Total for Question 3: 20

4. Let X be a compact Hausdorff space and let $\mathscr{D}(X) := \{\delta_x : x \in X\} \subseteq (C(X))^{\#}$ denote the set of Dirac measures on X.

- (a) (5 points) Show that $\mathscr{D}(X)$ is the set of extreme points of the space of regular Borel probability measures on X.
- (b) (10 points) Show that $\mathscr{D}(X)$ with the weak-* topology is homeomorphic to X.
- (c) (10 points) Show that every regular Borel probability measure on X is the weak-* limit of finitely supported probability measures (discrete probability measures) on X.

Total for Question 4: 25

5. (15 points) Show that the closed unit ball of an infinite-dimensional Banach space is not compact (with respect to the norm topology).

Total for Question 5: 15

- 6. Let V be a real vector space.
 - (a) (5 points) Prove that among all the convex sets B in V containing 0 as an internal point and having a given Minkowski functional p, there is a largest B_1 and a smallest B_0 with respect to set inclusion.
 - (b) (10 points) Show that B_1 is the closure of B_0 in the convex core topology (the coarsest topology on V which makes all linear functionals on V continuous.)

Total for Question 6: 15